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ZNTs being actively involved in

Alzheimer’s disease (AD) is the most common dementia in
estern societies. It is clinically characterized by a progressive loss

f cognitive function. The hallmark pathological findings include
idespread neuron loss, formation of extracellular �-amyloid
eptide (A�)-containing senile plaques (SP) and intracellular neu-
ofibrillary tangles. Up to now the cause of progression and
athology of AD is far from fully elucidated. An impressive amount
f AD research has focused upon the toxicological effects of the A�
eptide deposited in the AD brain [5,28,29,45,51,53,77]. Among the
umerous pathogenic mechanisms suggested to cause SP, the role
f zinc in the initiation and formation of SP have recently gained
onsiderable attention [66,69].

In the nervous system, most zinc ions are firmly bound to macro-
olecules. Only a fraction of the total amount of zinc ions in the

rain is present as free or loosely bound. Only these chelatable zinc
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f Alzheimer’s disease (AD) are �-amyloid peptide (A�)-containing senile
y tangles. Previous studies have suggested that an extracellular elevation
itiate the deposition of A� and lead to the formation of SP. In the present

g a correlation between zinc ions, zinc transporters (ZNTs) and AD, using
(AMG) and double immunofluorescence for the ZNTs and A�. We found
, 4, 5, 6, 7) were extensively present in the A�-positive plaques in the cortex
ensity of autometallographic silver enhanced zinc–sulphur nanoparticles
es than in the surrounding zinc enriched (ZEN) terminals. Moreover, we
f ZNT3 and autometallographic grains in the amyloid angiopathic vessels.

NTs and zinc ions were not detected, due to the limited tissue preservation
ion, our data provided significant morphological evidence of zinc ions and
the pathological processes that lead to plaque formation.

© 2008 Elsevier Inc. All rights reserved.

ions can be histochemically detected. Two methods are widely used

for detecting chelatable zinc ions in tissues. One is using fluores-
cent chelator to bind zinc ions and trace the zinc bound fluorescent
dye at low light microscopic magnifications [25,79]. The other is
to transform zinc ions into zinc–sulphur nanocrystals (immersion,
in vitro) or zinc–selenium nanocrystals (in vivo). These nanocrys-
tal signals can be silver enhanced by autometallography (AMG) on
tissue sections and analyzed at both light and electron microscopic
levels [20].

Body zinc homeostasis results from a coordinated regulation of
intestinal uptake, fecal elimination of excess zinc, renal reabsorp-
tion, and bone and other organ storage [17,37]. Zinc ions cannot
cross biological membranes by passive diffusion. Zinc trafficking
is mediated by zinc transporters (ZNTs and ZIPs) [15,41]. ZNTs
(SLC30) function to either transport zinc ions into intracellular
compartments for zinc sequestration or export of zinc out of cells in
a zinc excess condition. Eight members of the ZNT family have been
cloned and are referred as to ZNT1-8 [13,31,32,33,36,54,55,60].
Two other ZNT genes, ZNT9 and ZNT10, have been predicted
from the mouse and human genome resources [60,62]. All ZNT
proteins have similar topology, with six transmembrane domains,
an intracellular N-terminus and C-terminus and a His-rich loop
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between transmembrane domains IV and V [27,30,57], except for
ZNT5 which has extra 10 predicted transmembrane domains at
the N-termini of the protein and the His-rich loop locates between
transmembrane domains XIV and XV. The His-rich loop region has
been predicted to be the zinc-binding site [4,50].

Several lines of studies show that zinc is involved in AD neu-
ropathology as the changes in the distribution and level of the labile
zinc pool in neurons are observed in AD brains [19,23,58,64,67]. The
regions of the brain queued to have A�-plaque deposition (neo-
cortex, hippocampal region and amygdala) are densely populated
with zinc enriched (ZEN) terminals with loads of zinc-containing
synaptic vesicles, whereas regions with few A�-plaques (cerebel-
lum, brainstem and thalamus) have fewer ZEN terminals.

A� possesses selective high and low affinity zinc binding sites
[24]. An elevation of zinc ion level can ignite deposition of A� and
leads to SP [8,9]. Metal chelating agents (Clioquinol and DP-109,
both membrane permeable chelators) have been suggested inhibit-
ing the formation of amyloid plaques in APP transgenic mouse brain
[7,11,40]. Therefore, it has been hypothesized that a disturbance of
brain zinc ion homeostasis plays an important role in the AD brain.

Although much has been learned about the involvement of zinc
ions in the pathological process of AD, little is known about loca-
tions of ZNTs in the human brain, and that is in particular true
for brains suffering from AD. Recent evidences suggest that sig-
nificant alterations in the expression of ZNT1 [44], ZNT4 and ZNT6
[43,44,63] in human AD brains. In order to further evaluate the
roles of ZNTs in the AD pathogenesis, we studied the distributions
of ZNT1, ZNT3, ZNT4, ZNT5, ZNT6, ZNT7 and zinc ions in the human
brain affected by AD by means of immunofluorescence and immer-
sion AMG.

1. Experimental procedures

1.1. Antibodies

All ZNT antibodies used in this study were affinity-purified rabbit anti-sera
specific for each ZNT protein. ZNT1 anti-serum was kindly provided by Dr. W.F.
Silverman [59]; ZNT3 anti-serum was kindly provided by Dr. R.D. Palmiter [55].
The mouse monoclonal antibody detecting amino acid residues 1–12 of human A�
was purchased from Sigma. Fluorescein isothiocyanate (FITC)-conjugated donkey
anti-rabbit IgG, Texas Red-conjugated donkey anti-mouse IgG, and normal donkey
serum (NDS) were purchased from Jackson ImmunoResearch Laboratory (Pennsyl-
vania, USA). Specificities of the primary antibodies against ZNT1 and ZNT3-7 were
described previously by Western blot analyses [32,36,55,59,78].

1.2. Brain specimens and tissue preparation
Postmortem tissues of cerebral cortex from 5 patients (3 males, 2 females
average age 80 years) with a definitive diagnosis of AD were obtained from the
Alzheimer’s Disease Research Center at Johns Hopkins University, Baltimore, Mary-
land, USA. The brain samples were placed either in a 4% paraformaldehyde solution
for immunofluorescence analysis or in a 3% glutaraldehyde solution for AMG
analysis.

1.3. Immunofluorescence

Brain tissues were dehydrated in graded alcohols and xylene and embedded
in paraffin. Paraffin sections, 10-�m-thick, were cut and mounted on glass slides.
Prior to immunofluorescence staining, the sections were dewaxed in xylene and
rehydrated through graded alcohols. Sections were then rinsed in a 0.1 M Tris–HCl
buffered saline (TBS, pH 7.4) and boiled in a TEG buffer (50 mM Tris–HCl, 0.1 mM
EDTA, 10% glycerol, 1 mM dithiothreitol, 0.1 mM phenylmethanesulphonyl fluo-
ride) for 5 min in a microwave. After cooling and rinsing in TBS, sections were
pre-incubated with NDS (1:20) for 1 h and then incubated overnight in a mixture
of primary antibodies, mouse anti-A� (1:500) and rabbit anti-ZNT1 (1:50), ZNT3
(1:50), ZNT4 (1:25), ZNT5 (1:25), ZNT6 (1:50) or ZNT7 (1:25). After rinsing, sections
were incubated for 2 h with a mixture of secondary antibodies, FITC-conjugated don-
key anti-rabbit IgG (1:50, for labeling one of the ZNTs) and Texas Red-conjugated
donkey anti-mouse IgG (1:50, for labeling A�). After rinsing with PBS, sections were
mounted with an anti-fading mounting medium and examined using a confocal
laser scanning microscope (SP2, Leica). Images were collected and processed using
an Adobe Photoshop program.
Bulletin 77 (2008) 55–60

To assess nonspecific staining, a few sections in every experiment were incu-
bated with NDS instead of primary antibodies followed by all subsequent procedures
as described above. No distinct staining was observed (data not shown).

1.4. Immersion AMG

Brain tissue slices, 1- and 2-mm-thick, were prepared with a “fast tissue slicer”
(Histotech, Denmark) and immersed in NeoTimm solution (0.1% sodium sulphide
and 3% glutaraldehyde in 0.1 M phosphate buffer, pH 7.4). Brain slices were kept at
4 ◦C for 3 days. After rinsing with 0.1 M phosphate buffer, these slices were placed
in a 30% sucrose solution at 4 ◦C until they sank to the bottom of the jar. Brain slices
were then frozen with CO2 and cut in 30-�m sections with a cryostat. Sections were
incubated in an AMG developer for 60 min at 26 ◦C, counterstained with toluidine
blue, dehydrated in alcohol and xylene, and covered with a cover slide [16,20,21,64].
These brain slices were then analyzed and photographed with a light microscope. In
order to ensure the specificity of the zinc staining, the sodium diethyldithiocarba-
mate trihydrate (Merck) control procedure was performed as described previously
[18,20,64].

2. Results

2.1. Double immunofluorescence labeling of Aˇ and ZNTs

Double immunofluorescence for A� and ZNT1, ZNT3, ZNT4,
ZNT5, ZNT6 or ZNT7 was performed to analyze the distribution and
correlation of A� and ZNTs in the AD brains. Low magnification
(Fig. 1a1–f1) demonstrated numerous plaques of different size and
density stained with A� and ZNTs antibodies throughout the cere-
bral cortex in the AD brain. At higher magnification, the majority of
the plaques labeled by A� demonstrated typical characteristics of a
compact plaque that contained densely packed A� fibrils through-
out the plaque (Fig. 1a4–f4). ZNT1 and ZNT3-7 immunostaining
were abundantly present in the A�-positive plaque, but the inten-
sity and localization of the various transporters differed within the
individual plaque as well as between plaques (Fig. 1a2 and 3, f2
and 3). Among the ZNTs examined, ZNT5 showed the strongest
immunoreaction in the A�-positive plaques. Furthermore, ZNT3
immunofluorescence could be seen in the amyloid angiopathic ves-
sels (Fig. 1b2–b4). The subcellular localization of ZNTs could not be
present precisely, due to the limited tissue preservation.

2.2. Distribution of zinc ions in the senile plaques

AMG staining of the zinc–sulphur nanocrystals created by
immersion of the sections in a glutaraldehyde solution saturated
with sodium sulphide [20] was used to demonstrate the distri-

bution of free zinc ions in the cortex of AD brains. In the light
microscope analysis, zinc ions were more abundant in the plaques
than in the surrounding ZEN terminals that were enriched in the
neocortex. The diameters of the plaques were between 10 and
100 �M (Fig. 2a). At a higher magnification, the centers of most
AMG stained plaques were black and irregular. It appeared to have
processes emanating from the dense center and radiating to the
periphery of the plaques as previously described in mice [64,65].
The rest of the plaques materially resembled the appearance of a
dusty cloud (Fig. 2b and d). Occasionally, the whole plaque was
composed of a wickerwork of fine AMG stained fibers and totally
void of the dark-stained center (Fig. 2e). Moreover, large amounts
of AMG enhanced zinc–sulphur nanocrystals were seen in some
blood vessel walls (Fig. 2c and f) of the AD brains.

3. Discussion

The pathological key feature of AD is the development of A�-
containing SP. An increase of zinc ions in the brain is believed to
induce the deposition of A� by directly binding to A� through
histidine bridges leading to denaturalization of the protein and
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Fig. 1. Double immunofluorescence analysis of A� and ZNT1 (a), ZNT3 (b), ZNT4 (c), ZNT5 (d
shows abundant expression of ZNTs in the numerous A�-positive plaques (arrowheads i
(a3–f3) in the SP. ZNT3 immunoreactivity is also expressed within the walls and in the vic
by A� demonstrate the typical characteristics of a compact plaque that contains densely p
(a2–4 to f2–4).

formation of senile plaques [8,9]. In the present study, immunofluo-
resence staining of human AD brain sections revealed an abundant
expression of ZNTs in numerous A�-positive plaques throughout
the cerebral cortex. Moreover, we showed that abundant zinc ions
were detected in the senile plaques, supporting the notion that zinc
), ZNT6 (e), or ZNT7 (f) in the cerebral cortex of human AD brains. Low magnification
n a1, b1, c1, d1, e1, f1). High magnification shows an extensive distribution of ZNTs
inity of cerebral vessels (arrowhead in b2–b4). The majority of the plaques labeled

acked A� fibrils throughout the plaques (a4–f4). Scale bars = 150 �m (a1–f1), 15 �m

is an important player in the creation of and, possibly, maintenance
of senile plaques.

Six ZNT family members examined were expressed in the A�-
positive zinc enriched plaques. Previous studies from our and
other laboratories have demonstrated that different zinc trans-
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(f). Sca
Fig. 2. AMG staining of zinc ions within the cortex of human AD brains. Zinc is mo
AMG-positive plaques are distributed throughout the cortex (a). High magnificatio
shown with dense cores and processes emanating from dense cores (b and d). Few
center (e). A large amount of zinc ions can also be seen in the walls of blood vessels

porter proteins have different cellular and subcellular localizations.
The difference in cellular localization may correlate to their roles
in cellular zinc homeostasis both under normal and pathological
conditions [15,33,71,72,73,74]. It also suggests a much complicated
mechanism by which ZNTs are involved in the plaque formation.

ZNT1, a ubiquitous zinc transporter localized in the plasma
membrane, functions to efflux zinc out of cells [1,52,56,59].
Exposure to a high dose of zinc or oral administration of zinc
up-regulates Znt1 gene expression in cultured cells [38,70] or in
tissues isolated from mice such as small intestine, kidney, and liver
[22,41,47]. Therefore, we hypothesize that a disruption in cellu-
lar zinc homeostasis in neuronal cells triggers up-regulation of
Znt1 transcription and protein expression to prevent neurons from
death. Increased ZNT1 expression and subsequent increased efflux

of zinc ions cause an elevation of zinc ions in the extracellular space
that might initiate the deposition of A� resulting in the creation of
�-amyloid plaques.

All ZNTs (ZNT2-8), except for ZNT1, are localized on the intra-
cellular membranes and are involved in transporting zinc ions
into different intracellular compartments when the intercellular
level of zinc ions is elevated [33]. ZNT3 is mainly localized in the
membranes of zinc-rich synaptic vesicles of the ZEN terminals and
serves to sequester zinc ions into the vesicles [75]. The vesicu-
lar zinc ions are released into the synaptic cleft during synaptic
activity and interact with amino acid receptors on the synaptic
plasma membrane [75]. Apart from the vesicular membranes of
glutamatergic vesicles, ZNT3 is also expressed in the epithelial
cells of the choroid plexus [74], the Bergman glial cells of mouse
cerebellar cortex [73] and the postganglionic neurons of mouse
superior cervical ganglia [72]. ZNT3 knockout mice are devoid
of zinc ions in the ZEN terminals [14]. Synaptic release of zinc
ions has been suggested to cause A� to precipitate into amyloid
[9,26,31,39]. In addition, it has been shown that genetic abla-
tion of ZNT3 in the Tg2576 Alzheimer mouse model inhibits the
formation of senile plaques and greatly decreases zinc ion concen-
ndant in the plaques and the blood vessel walls than in the surrounding area. The
s the AMG-positive plaques (b, d, e) and blood vessels (c and f). Most plaques are
es are composed of a feltwork of fine fibers and are absent from the dark-stained
le bars = 200 �m (a), 20 �m (b–f). Asterisks (*) indicate the lumen of blood vessels.

trations in the cerebral amyloid angiopathy (CAA) [26,39]. Taken
together, our finding of an abundant expression of ZNT3 in the zinc-
containing plaques and amyloid angiopathic vessels supports the
notion that ZNT3 plays a key role in the formation of senile plaques
and CAA.

A� accumulation has been reported in the endoso-
mal/lysosomal system in postmortem AD brains [68], and the
intraneuronal A� accumulations seem to precede amyloid plaque
formation in APP transgenic mice [61,76]. ZNT4 might have an
important role in this process as it is localized in the intracellular
vesicular membrane and functions to increase vesicular zinc
concentration [35,48]. In fact, in addition to bind to zinc, ZNT4 also
binds to other divalent cations [50]. Intriguingly, many divalent
cations, such as copper and iron, have been hypothesized to be

involved in the pathogenesis of AD due to their abundant presence
in the senile plaques [2,6,42,49]. This points to multiple roles of
ZNT4 in the deposition of A�.

A� is generated from the amyloid precursor protein (APP)
by a proteolytic activity of �- and �-secretase [34]. APP and �-
secretase are also involved in the cerebral cholesterol shuttle, and
the neurosecretases including �-secretase provide strategies to
treat sporadic and familial Alzheimer disorders [10,46]. The �-
secretase complex contains both high and low affinity zinc-binding
sites. It catalyzes its substrates in the trans-Golgi network (TGN) [3].
Interestingly, the functions of ZNT5, ZNT6 and ZNT7 are believed
to facilitate the translocation of the cytoplasmic zinc ions into
the Golgi apparatus [12,32,36]. Therefore, we hypothesize that
ZNT5-7 may be participating in the pathogenetic process of AD
by transporting the cytoplasmic zinc ions into the Golgi appara-
tus and incorporating them into newly synthesized metalloproteins
or influencing the activity of the metalloproteins, including the �-
secretase complex. Further studies are needed to identify the exact
locations of these zinc transporters along the secretory pathway
and roles of individual transporters in incorporation of zinc into
metalloproteins.



search

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

L.-H. Zhang et al. / Brain Re

Overall, the present study provides morphological evidence that
zinc and ZNTs are involved in the pathological accumulation of
A�. Although the intensity of ZNTs staining in the plaques differed
somewhat among different transporters, they were found to be
more abundant in the plaques than in the surrounding tissue, sug-
gesting that ZNTs are involved in a complicated mechanism that
leads to plaque formation. We hope that the present data add to
the growing knowledge of the significance of ZNTs in the normal
and AD brain.
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